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On the Expected Number of Distinct Points in a 
Subset Visited by an N-Step Random Walk 
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Received March 10, 1981 

Many investigators have calculated asymptotically valid expressions for the 
expected number of distinct points visited by an n-step random walk on a 
lattice. In this note we point out that the same formalism can be used to study 
the expected number of distinct points in a subset of lattice points. We also 
calculate the expected occupancy of the subset and give sufficient conditions for 
the ratio of the two calculated quantities to have the same asymptotic time 
dependence as for the full lattice. Specific examples are considered. 
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1. INTRODUCTION 

Several investigators have calculated the expected number of distinct sites 
visited by an n-step random walk. (!-5) We will call the number of distinct 
sites visited the cardinality of the random walk. The expected cardinality 
will be denoted by (S(n)), where S(n) is the random variable. The random 
walks of interest will be assumed to take place on a translationally invariant 
lattice. Results of these investigations have found application in different 
areas of metallurgy and chemical physics particularly relating to trapping 
phenomena. (6-18) The problem of finding the complete distribution of the 
cardinality involves considerably more sophisticated mathematics and re- 
sults are not known in complete generality. (19-23) It seems not to have been 
remarked on that the formalism used to calculate (S(n)) for complete 
lattices can also be used for sublattices or for other sets of points. Random 
walks on binary lattices have been investigated by Brandt (24) and Argyrakis 
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and Kopelman (12) in connection with energy migration in photosynthetic 
units. In this paper we examine the behavior of S(n) for several different 
subsets of points. 

2. FUNDAMENTAL QUANTITIES 

Let the structure function of the random walk be denoted by 

~(0)  = ~ p(j)exp(ij  �9 0)  (1) 
J 

wherep(j)  is the probability of a single step having displacement j. Let T be 
the subset of points that is of interest, and ~2 be the set of all lattice points. 
Then the expected cardinality on T of an n-step walk is equal to 

(ST(n))  = ~ E FAs) (2) 
j = 0 s @ T  

where Fj(s) is the probability that s is visited for the first time at s tepj .  In 
order to find the asymptotic (n --) ~ )  behavior of (St(n)) it is convenient 
to introduce the generating functions 

S(z; T)= ~ (ST(n))z', F(s ;z)  = ~,, F.(s)z"  (3) 
n = 0  n = 0  

If P, (s) is the probability of the random walker being at s at step n then it is 
known that 

OQ e x p ( -  is- 0 )  
,=0 (2~r) ~ .5• 1 - zh(O) dDO (4) 

where D is the number of dimensions. Furthermore, from the relation 
between F(s; z) and P(s; z) it follows that 

S(z; T) = E e(s;z)/[(l - z)P(O;z)] (5) 
s E T  

When T = ~ one can use the relation 

~ P ( s ; z )  = 1/(1 - z) (6) 
s 

to infer that S(z;~2)= 1 / [ (1 -z )2P(O;z ) ]  as given by Montroll and 
Weiss. (4) A second interesting relation results from the observation that the 
expected number of visits to T by an n-step walk is 

X e (s) (7) 
s ~ T j = O  
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The quantity Vr(n ) will be termed the occupancy of 
random walk. The generating function of the (Vr(n))  is 

V ( z ;  r )  = e ( s ; z ) / ( 1  - 
s E T  

It follows from this that 

S(z; T) -- V(z; T)/P(O; z) 

T by 
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an n-step 

(8) 

(9) 

3. PERIODIC SETS 

It is instructive to consider the special case of sets T whose elements 
are contained in a unit cell, i.e., the smallest translationally invariant unit of 
the lattice. For simplicity and without loss of generality, we carry out the 
calculation in one dimension. Let the period be denoted by N, and let 
T= {rl,r 2 . . . . .  rk) in the fundamental cell. To calculate either V(z; T) or 
S(z; T) we need the sum 

k m ~ k k /_~' exp[--i(r+ +jN)O] 
E ~ e(rt +jN;z) = E 1- - -~- -~  dO 
l = l j = - o o  l = l  j = - - o o  ~r 

1 f' BT(O)~/~=-ooexp(--iJ NO) 
2~r J -  ~ 1 -- z~.--~) dO (10) 

where 
k 

BT(O ) = ~ exp(--irfl) (11) 
/=1  

The sum in the last term of Eq. (10) is easily evaluating using the identity 

exp( - ijNO ) = 8 
j= -oo j= - +  

The only term that contributes to the integral in Eq. (10) is t h e j  = 0 term 
so that the sum is equal to 

k P 
- ( 1 3 )  

N(1 - z) 1 - z 

where p is the density of T points in the unit cell. If we let N + oo in such a 
way that limN_,~ k i N  = p = const, it is clear that 

lim ( ~ P(s ; z ) )=p~ ,P(s ; z )  (14) 
N-+oo  S@ TN s 
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This is valid for a periodic array of points. The opposite extreme is a 
random set T, i.e., a point belongs to T with probability c. The strong law 
of large numbers ensures that in the limit N ~  ~ k i N  approaches c with 
probability 1 so that Eq. (14) remains valid with p = e. One can conceive of 
many sets T that are intermediate between strict periodicity and purely 
random for which Eq. (14) is valid. In addition Eq. (14) is also valid in any 
number of dimensions by a similar set of calculations. 

4. APERIODIC SETS 

Interesting results emerge when the set T has a nonuniform density. 
Consider, for example, the set T in one dimension consisting of all points of 
the form +jm, j = 0, 1,2 . . . . .  m = 1,2 . . . . .  and a symmetric random 
walk [so that X(0)= )~(-0)].  The sum appearing in Eq. (10) can then be 
written 

s~r  ~ j = l  1 - zX(O) 

where r r ( z )  is the indicated sum. The asymptotic evaluation of either the 
expected occupancy or the expected cardinality on T requires that we 
determine the analytic behavior of r r (Z)  near z = 1. We will assume that 
0 = 0 is the only value of 0 for which h(O) = 1. For 0 ~ 0  we have 

1+  2 ~ cosjmO~2(~ 
j= 1 a0 

= 2 F ( l + m l ) c o s (  ~r ) / 1 0 1 ' / m ~  (16) 

The singular behavior of Fr (z  ) is determined by the behavior of the 
integrand in Eq. (15) in a neighborhood of 0 = 0, hence we want to 
represent the integrand accurately in this region. If we assume that the 
variance of the single step transition probability is finite, 

j2p(j) = a2 < ~ (17) 

then, near 0 = O, 

~ +o(0 z) (18) X(0) = 1 2 

for a symmetric random walk. It therefore follows that for z approximately 
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equal to 1 the singular behavior of FT(z ) is that of 

2 F ( 1  + dO 1 ] c o s / ~ ]  ( ~ 1 1 
~r m} \2mlJo  01/m 1 -- Z + O202/2 

2(1-1/m)/2 F(1 + l /m) K 
-- O l - 1 / m  (1 -- Z) (l+l/m)/2 = (1 -- Z) (l+l/m)/2 (19) 

where K lumps all of the constants shown. For z ~ l  it is known that 
e(0;  z )~{o[2( I  - z)]1/2} -1 so that 

V(z; T),.-.,K(1 - z) -(3+'/mV2 
(20) 

S(z; T).--.Ko~-2 (1 - z) -0+ l/(2m)) 

A Tauberian theorem for power series {2s) together with the fact that 
(ST(n)) and (VT(n)) are monotonic in n allows us to conclude that 

KoV~- l/(2m) 
n ( S r ( n ) ) ~  F(1 + 1/(2m))  

(21) 
K tl(1+1/m)/2 

(Vr(n))  F(3 /2  + 1/(2m))  

If we relax the assumption of a finite variance for single step jump 
probabilities then other forms of n dependence can be obtained for both 
the expected occupancy and the expected cardinality. 

. EFFICIENCY IN SAMPLING OF DISTINCT POINTS 

A function that gives some information on the efficiency with which 
the random walk samples the set T is 

Ur(n) = ST(n)~ Vr(n) (22) 

Equation (21) allows us to calculate the quantity 

( S t ( n ) )  F (3 /2  + 1/(2m))  [ 2o2 1/2 

(Vr(n)) F(1 + 1/(2m))  ) (23) 

for the set defined, above which can be compared to the result for T--- fa: 

(S~(n)) ( 802 ]1/2 (24)  
(V~(n)) ~ \  rm ! 

The n dependence is the same in both cases, although the coefficients 
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differ. It is tempting to conjecture that the n dependence of (ST(n)) / 
(VT(n)) is independent of the set T. We have not succeeded in showing 
this to be the case but it is possible to state sufficient conditions for its 
validity. As an example, let P(0; z) and I ' r(z ) have the form 

P ( 0 ; z ) ~  (l z)" (1 - z) • 

in a neighborhood of z = 1, where Ll(x ) and L2(x ) are slowly varying 
functions at x = oo [i.e., limx~o~ Li(ex)/L(x ) = 1 for all c > 0]. Further, let 
the Li(x ) satisfy 

dlnLi(x) < const (26) 
dx x 

Under these conditions one can assert that the ratio in Eq. (23) does not 
depend, as a function of n, on the set T. Any multiplicative constants may, 
however, depend on T. It would be interesting to furnish conditions under 
which this last constraint does not itself apply, that is, 

<ST(n)>~( VT(n)> = < Se(n) > / < Ve(n) > (27) 

for all sets T. We note that it is possible for more complicated forms for 
P(0; z) and I'v(z ) to arise as shown by some recent work by Hughes, 
Shlesinger, and Montroll, <26) but the sufficient conditions in Eqs. (25) and 
(26) cover a variety of interesting cases. A second, and apparently much 
harder problem suggested by our analysis is to determine the relation 
between the asymptotics of (Ur(n)> and those of (Sr(n)>/(VT.(n)>. We 
conjecture that the asymptotic n dependence of these quantities is the same, 
but we have no evidence either for or against the conjecture. 

6. EXAMPLES IN HIGHER DIMENSIONS 

Several trivial generalizations of Eqs. (10) and (19) can be made. As an 
example, if we consider a Cartesian lattice in two dimensions, a symmetric 
random walk with the properties 

p(j,k) =p(j ,  - k )  = p ( - j , k )  
(28) 

E j2p ( j , k )  = o2, E k2p( j ,k)  = o 2 
j,k j,k 

and a set T consisting of all points of the form (+j2, +__k2), where 
j ,k=O, 1,2 . . . .  then 

( Sr(n))~~176 ---2-)1/2F2( 4 ) l n n l  n 1/2 (29) 
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and 

(VT(n)) lnn (30) 

This coincides with the result for T = ~. A second generalization is the 
continuous time random walk. (4) Let the random walks be separable in the 
sense that the joint probability that a random walker makes a jump r after 
having remained on the lattice point for a time between t and t + dt can be 
expressed as 

p(r,  t) dt = p ( r )+ ( t )d t  (31) 

where ~(t) is the probability density of pausing times. Then the Laplace 
transforms for the expected number of visits to T in time t and the expected 
number of distinct points visited in T during time t, can be written as 
V(q~*(u), T) and SOp*(u), T) respectively, where 

+*(u) = fo~e-U'~(t) dt (32) 

If the mean time between successive jumps is finite, i.e., 

( t)  = fo~t~(t)dt< ~ (33) 

we can expand ~p*(u) around u = 0 as ~ * ( u ) ~ l  - u(t) + o(u) and it can 
be shown that this implies that formulas for asymptotic estimates derived so 
far are correct in continuous time provided that we replace n by t / ( t ) .  
Likewise if the mean time between successive jumps is infinite and at long 
times ~( t )~t  -1-~, 0 < a < 1, then ff*(u) can be expanded around u = 0 as 
~b*(u)~l - cu" + o(u ~) where c is a constant. Our asymptotic results will 
again be correct if we replace n by t"/[cF(1 + a)]. (27) 

One can ask different kinds of questions about higher-dimensional 
random walks. For example, in two dimensions we can ask for the average 
number of distinct points visited to a line at height m. That  is, the set T 
consists of all points of the form ( j ,m), j  = 0, ___ 1, ___2 . . . . .  It is then easily 
verified that 

FT(Z)= 2_~ f_ ~r e-irn~ dO 
_,~ 1 - z?~(0, 0 ) ( 3 4 )  

If we make the assumption of symmetry in the form given in Eq. (28) then 
Eq. (34) implies that 

cos mO dO 

= '- ox (- I _l i (l- (3S) 
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and 

~-Tro, exp(-1~---[ [ 2 ( 1 -  z)]I /2)  S(z; rm) 
(1 - z)3/21n[ 1/(1 - z)] 

Notice that in the limit z = 1 

k S(z;Tm)=(1 z)3/21n[1/( 1 z)] c~ ~ 7 ( J - ~ )  
m ~ - - ~  - -  - -  

(36) 

2~ro1% 

(1- z)21n[ 1/(1- z)] = s(~;  a) (37) 

so that (Srm(n))/(Vrm(n))~2~rol%/lnn as one would expect since the 
conditions in Eqs. (25) and (26) are fulfilled. Analogous problems can be 
treated in three dimensions. Let the set T consist of the plane z = m on a 
simple cubic lattice. Following the steps described above we find that 

(Sr(n))~ o--33 P(0; 1) 
(40) 

(sT(n))~( vT(n))-[ e(0; 1)]-' 
where (3'4) P(0; 1)= 1.5164 for a simple cubic lattice. The corresponding 
result for a line y = k, z = m is 

lnn (ST(n)) %%P(0; 1) ' (VT(n))/(ST(n))--P(O; 1) (41) 

All of the results cited so far are for (ST(n)); the more interesting 
problems related to the higher moments of cardinality or to the distribution 
of the cardinality do not yield to techniques based on generating functions 
and require the sophisticated methods pioneered by Jain and his collabora- 
tors (2~ as well as by Donsker and Varadhan. (24) The statistics of 

and 

the known result for two dimensions. It is interesting to observe that 
although the exponential term in Eq. (36) is a slowly varying function, the 
hyperbolic cotangent in Eq. (37), which is the sum of an infinite number of 
slowly varying functions, is not itself of this class. It follows from Eq. (36) 
that for m fixed, and n ~ oz 

al(8cm ) 1/2 
(ST~(n)) Inn (38) 
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occupancy of a set T are considerably simpler and can be handled in a 
straightforward manner by the generating function technique suggested by 
Darling and Kac, (28) Spitzer, (29) and Rubin and Weiss. (3~ 
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